
Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.


Check for
Updates

Gradient Descent

Optimization problems can be divided into minimization and maximization categories, and max�
imization problems can always be transformed into equivalent minimization problems. Therefore,
in the following text, we will focus on minimization problems. Gradient descent is an iterative
optimization algorithm used to find the local minimum of a function. It gradually approaches the
minimum point by moving in the opposite direction of the function’s gradient.

1 EQUIVALENT PROBLEMS

First, let us prove some lemmas about monotonicity.

Proposition 1 (Order Preservation of Strictly Monotonic Functions) If 𝑓 is a strictly in�
creasing function, then

𝑥1 < 𝑥2 ↔ 𝑓(𝑥1) < 𝑓(𝑥2)

That is, when the output strictly increases, the input must strictly increase.

Proof. (→) This is the definition of strictly increasing, 𝑥1 < 𝑥2 → 𝑓(𝑥1) < 𝑓(𝑥2)
(←) By contradiction, if 𝑥1 ≥ 𝑥2 then 𝑓(𝑥1) ≥ 𝑓(𝑥2), which is a contradiction. ∎

Proposition 2 (Strictly Monotonic Function → Injection) If 𝑓 is a strictly monotonic
function, then 𝑓 is injective. That is,

𝑥1 = 𝑥2 ↔ 𝑓(𝑥1) = 𝑓(𝑥2)

Proof. (→) This follows from the definition of functions.
(←) We need to prove injectivity. Taking 𝑓 strictly increasing on 𝑋 as an example. Let 𝑥1, 𝑥2 ∈
𝑋, 𝑓(𝑥1) = 𝑓(𝑥2). Suppose 𝑥1 < 𝑥2, then by strict monotonicity, 𝑥1 < 𝑥2 → 𝑓(𝑥1) < 𝑓(𝑥2), which
is a contradiction. Similarly 𝑥1 ≯ 𝑥2, therefore 𝑥1 = 𝑥2 . ∎

Proposition 3 (Strictly Monotonic Functions Preserve Extreme Points) Let 𝑌 ⊆ ℝ, 𝑓 :
𝑋 → 𝑌 be an arbitrary function, and 𝑔 : 𝑌 → ℝ be a strictly increasing function. Then 𝑔 ∘ 𝑓
and 𝑓 have the same extreme points. Conversely, they have opposite extreme points.

Proof. By the lemma, we know 𝑥1 ≤ 𝑥2 ↔ 𝑔(𝑥1) ≤ 𝑔(𝑥2) Thus for some point 𝑥∗ ∈ 𝑋, ∃𝛿 >
0, ∀𝑥 ∈ 𝑈(𝑥∗, 𝛿)

𝑓(𝑥∗) ≤ 𝑓(𝑥) ↔ 𝑔(𝑓(𝑥∗)) ≤ 𝑔(𝑓(𝑥))

This proves that a minimum point of 𝑓 is also a minimum point of 𝑔 ∘ 𝑓, and a minimum point
of 𝑔 ∘ 𝑓 is also a minimum point of 𝑓. ∎

Based on this, for the optimization problem

1

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html?pdf_timestamp=2025-10-21T09:01:55.000Z

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

arg min 𝑓(𝑥)

it always has the same solution as arg min 𝑔 ∘ 𝑓(𝑥), if 𝑔 is a strictly increasing function. Or
arg max 𝑔 ∘ 𝑓(𝑥), if 𝑔 is a strictly decreasing function.

Example 1

Consider an interesting matrix optimization problem that demonstrates the equivalence of
different objective functions under monotonic transformations.

Let 𝑿 = (𝑥𝑖𝑗)
𝑛×𝑛

 be a non�negative matrix with column sum constraints: ∑𝑛
𝑖=1 𝑥𝑖𝑗 = 𝑐 for all

𝑗 (where 𝑐 is a constant).

Define two objective functions:

𝑓1(𝑿) = ∑𝑛
𝑖=1 𝑥𝑖𝑖

∑𝑖≠𝑗 𝑥𝑖𝑗

(diagonal elements / off�diagonal elements)

𝑓2(𝑿) = ∑𝑛
𝑖=1 𝑥𝑖𝑖

∑𝑛
𝑖,𝑗=1 𝑥𝑖𝑗

(diagonal elements / all elements)

Due to the column sum constraint, the total sum of all elements is: ∑𝑛
𝑖,𝑗=1 𝑥𝑖𝑗 = 𝑛𝑐

Therefore: 𝑓2(𝑿) = ∑𝑛
𝑖=1 𝑥𝑖𝑖
𝑛𝑐

The sum of off�diagonal elements is: ∑𝑖≠𝑗 𝑥𝑖𝑗 = 𝑛𝑐 − ∑𝑛
𝑖=1 𝑥𝑖𝑖

So: 𝑓1(𝑿) = ∑𝑛
𝑖=1 𝑥𝑖𝑖

𝑛𝑐− ∑𝑛
𝑖=1 𝑥𝑖𝑖

Key Observation: Let 𝑠 = ∑𝑛
𝑖=1 𝑥𝑖𝑖, then:

• 𝑓2 = 𝑠
𝑛𝑐

• 𝑓1 = 𝑠
𝑛𝑐−𝑠

These two functions have a monotonic relationship: 𝑓1 = 𝑓2
1−𝑓2

⋅ 1
𝑛

Since 𝑓1 is a strictly increasing function of 𝑓2 (in the range 𝑓2 < 1), we have:

The optimization problems max 𝑓1(𝑿) and max 𝑓2(𝑿) are equivalent and have the same
optimal solution.

2 UNCONSTRAINED CASE

ℝ𝑛 is the 𝑛�dimensional Euclidean space. 𝒙 ∈ ℝ𝑛, 𝑓 : ℝ𝑛 → ℝ is a differentiable function. Finding
the minimum point and minimum value of 𝑓 is the optimization problem

min
𝒙∈ℝ𝑛

𝑓(𝒙)

The iterative equation is

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝛁𝑓(𝒙𝑘)

2

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

where the step size 𝛼 is a positive number that determines the update magnitude at each iteration.
𝛁𝑓(𝒙𝑘) is the gradient of function 𝑓 at point 𝒙𝑘 . The algorithm’s goal is to make 𝒙𝑘 → 𝒙∗ as 𝑘 →
∞ where 𝒙∗ ∈ arg min 𝑓(𝒙). that is to say, 𝒙∗ is a minimum. The pseudocode is as follows:

Input: initial point 𝒙0, step length 𝛼 > 0, tolerance 𝜀 > 0, max iterations 𝑁
Output: 𝒙∗

1 𝑘 ← 0
2 while 𝑘 < 𝑁
3 𝒈𝑘 ← 𝛁𝑓(𝒙𝑘)
4 𝒙𝑘+1 ← 𝒙𝑘 − 𝛼𝒈𝑘
5 if 𝑓(𝒙𝑘+1) < 𝜀 then
6 return 𝒙𝑘+1
7 𝑘 ← 𝑘 + 1
8 return 𝒙𝑘

Algorithm 1: Pseudocode of Gradient Descent

Let us look at an example

min
(𝑥1,𝑥2)∈ℝ2

𝑓(𝑥1, 𝑥2)

where 𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 . First, we know through analytical methods that for 𝑥1, 𝑥2 ∈ ℝ

𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 = (𝑥1, 𝑥2)(1
1/2

1/2
1)(𝑥1

𝑥2
) ≥ 0

Equality holds if and only if 𝑥1 = 0, 𝑥2 = 0. Therefore, the minimum value 0 is achieved at the
origin. Next, we use gradient descent to solve this.

𝛁𝑓(𝑥1
𝑥2

) = (2𝑥1 + 𝑥2
2𝑥2 + 𝑥1

)

(𝑥1
𝑥2

)
𝑘+1

= (𝑥1
𝑥2

)
𝑘

− 𝛼(2𝑥1 + 𝑥2
2𝑥2 + 𝑥1

)
𝑘

We set the initial condition as 𝑥0 = (1.0, 2.0)T, step size 𝛼 = 0.1, and stopping condition as 𝑓 ≤
10−20 . After 212 iterations, the function value reaches 9.925765507684842e�21. The trajectory left
by each iteration in the feasible region is shown in the figure below. The black solid lines in the
figure are the contour lines of function 𝑓, and the arrows indicate the gradient field. The coloring
indicates the magnitude of the function value, with darker colors representing larger function
values. The red points represent the positions updated at each iteration, and the connecting lines
are the iteration trajectories. It can be seen that each iteration moves opposite to the gradient
direction with step size proportional to the gradient magnitude, and the iteration points gradually
approach the origin—the theoretical minimum point.

When we increase the step size to 0.4, after 44 iterations, the function value reaches
7.503260807194337e�21.

When we increase the step size to 0.5, after 35 iterations, the function value reaches
5.929230630780102e�21.

3

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

If the step size is increased to 0.6, it leads to divergence. Therefore

Figure 1: Gradient Descent Visualization

It is not difficult to see that the iteration speed is related to the step size, which can lead to
divergence. Therefore, we need to choose an appropriate step size to ensure convergence.

3 CONSTRAINED CASE

When dealing with constrained optimization problems, we need to find the minimum of a function
𝑓(𝒙) subject to constraints. The general form is:

min
𝒙∈ℝ𝑛

𝑓(𝒙)

subject to 𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1, 2, …, 𝑚

ℎ𝑗(𝒙) = 0, 𝑗 = 1, 2, …, 𝑙

4

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

For constrained problems, we cannot simply move in the negative gradient direction as this may
violate the constraints. Instead, we need to project the gradient onto the feasible region or use
penalty methods.

3.1 Projected Gradient Method

The projected gradient method modifies the standard gradient descent by projecting each iteration
onto the feasible set 𝒞:

𝒙𝑘+1 = Π𝒞(𝒙𝑘 − 𝛼𝛁𝑓(𝒙𝑘))

where Π𝒞 denotes the projection operator onto the constraint set 𝒞.

The pseudocode for the projected gradient method is:

Algorithm Projected Gradient Method for minimize 𝑓 subject to 𝒙 ∈ 𝒞
Input: initial point 𝒙0 ∈ 𝒞, step length 𝛼 > 0, tolerance 𝜀 > 0, max iterations 𝑁
Output: 𝒙∗

1 𝑘 ← 0
2 while 𝑘 < 𝑁
3 𝒈𝑘 ← 𝛁𝑓(𝒙𝑘)
4 𝒚𝑘+1 ← 𝒙𝑘 − 𝛼𝒈𝑘
5 𝒙𝑘+1 ← Π𝒞(𝒚𝑘+1)
6 if 𝑓(𝒙𝑘+1) < 𝜀 then
7 return 𝒙𝑘+1
8 end
9 𝑘 ← 𝑘 + 1

10 end
11 return 𝒙𝑘

3.2 Example: Linear Constraint

Consider the optimization problem:

min
(𝑥1,𝑥2)∈ℝ2

𝑓(𝑥1, 𝑥2)

subject to 𝑥2 = 1

where 𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 (same as the unconstrained case).

The feasible set is the line 𝒞 = {(𝑥1, 𝑥2) : 𝑥2 = 1}. The unconstrained minimum (0, 0) is not
feasible, so we expect the constrained optimum to lie on the constraint.

The gradient is the same as in the unconstrained case.

For the linear constraint 𝑥2 = 1, the projection operation onto the line is:

Π𝒞(𝒚) = (𝑦1
1)

Algorithm implementation:

5

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

(𝑥1
𝑥2

)
𝑘+1

= Π𝒞((𝑥1
𝑥2

)
𝑘

− 𝛼(2𝑥1 + 𝑥2
2𝑥2 + 𝑥1

)
𝑘
)

We demonstrate the algorithm starting from the same initial point as the unconstrained case:

We set the initial point as 𝑥0 = (1.0, 2.0)T, which lies off the constraint. The algorithm first projects
this point onto the constraint 𝑥2 = 1, resulting in (1.0, 1.0). After 1000 iterations, it converges to
the constrained optimal point with function value 0.75.

The visualization below shows the optimization trajectory and the projection process. The black
line represents the constraint 𝑥2 = 1.

For all iterations, the visualization shows (with later iterations becoming more transparent):
• Red arrows: gradient steps −𝛼𝛁𝑓(𝒙𝑘) from current point to unconstrained update
• Orange dotted lines: projection steps from the unconstrained update back to the constraint

This clearly demonstrates how the projected gradient method alternates between taking gradient
steps and projecting back to the feasible set. The gradient arrows show both the direction and
magnitude of the descent step, while the projection steps ensure feasibility. The path successfully
reaches the constrained optimal point (−0.5, 1.0).

6

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

Figure 2: Constrained Gradient Descent Visualization

3.3 Penalty Method

Another approach for handling constraints is the penalty method, where we convert the
constrained problem into an unconstrained one by adding penalty terms:

min
𝒙∈ℝ𝑛

𝐿(𝒙, 𝜌) = 𝑓(𝒙) + 𝜌 ∑
𝑚

𝑖=1
max(0, 𝑔𝑖(𝒙))

2 + 𝜌 ∑
𝑙

𝑗=1
ℎ2

𝑗(𝒙)

where 𝜌 > 0 is the penalty parameter. As 𝜌 → ∞, the solution of the penalized problem approaches
the solution of the original constrained problem.

4 CONVERGENCE

Next, we rigorously analyze the convergence of gradient descent.

7

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

Ed
iti

on
 2

02
5-

10
-2

1
09

:0
1:

55
. A

cc
es

s t
he

 
w

eb
pa

ge
 o

f t
hi

s a
rt

icl
e.

©
U

w
ni

, A
ll

Ri
gh

ts
Re

se
rv

ed
.

5 CONVEX OPTIMIZATION

If the optimization problem is convex, then gradient descent can guarantee finding the global
minimum. The definition of a convex function is: for any 𝑥, 𝑦 ∈ ℝ𝑛 and 𝜆 ∈ [0, 1], we have

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)

8

https://www.omots.io/posts/gradient-descent/index.html
https://www.omots.io/posts/gradient-descent/index.html

	Equivalent Problems
	Unconstrained Case
	Constrained Case
	Projected Gradient Method
	Example: Linear Constraint
	Penalty Method

	Convergence
	Convex Optimization

