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Gradient Descent

Optimization problems can be divided into minimization and maximization categories, and max-
imization problems can always be transformed into equivalent minimization problems. Therefore,
in the following text, we will focus on minimization problems. Gradient descent is an iterative
optimization algorithm used to find the local minimum of a function. It gradually approaches the
minimum point by moving in the opposite direction of the function’s gradient.

1 EQUIVALENT PROBLEMS

First, let us prove some lemmas about monotonicity.

PROPOSITION T (Order Preservation of Strictly Monotonic Functions) If f is a strictly in-
creasing function, then

x) < x; © flxg) < f(x)

That is, when the output strictly increases, the input must strictly increase.

PROOF. (-) This is the definition of strictly increasing, x; < x, — f(x;) < f(x,)
(«) By contradiction, if x; > x, then f(x;) > f(x,), which is a contradiction. |

PROPOSITION 2 (Strictly Monotonic Function — Injection) If f is a strictly monotonic
function, then f is injective. That is,

xp =% © flx1) = f(x;)

PrROOF. (-) This follows from the definition of functions.

(«) We need to prove injectivity. Taking f strictly increasing on X as an example. Let x,x, €
X, f(x;) = f(x,).Suppose x; < x,, then by strict monotonicity, x; < x, — f(x;) < f(x,), which
is a contradiction. Similarly x; # x,, therefore x; = x,. |

PROPOSITION 3 (Strictly Monotonic Functions Preserve Extreme Points) Let Y C R, f:
X — Y be an arbitrary function, and g : Y — R be a strictly increasing function. Then g o f
and f have the same extreme points. Conversely, they have opposite extreme points.

PROOF. By the lemma, we know x; < x, < g(x;) < g(x,) Thus for some point x* € X, 36 >
0,Vx e U(x",0)

fx") < fx) & g(f(x") < g(f(x))

This proves that a minimum point of f is also a minimum point of g o f, and a minimum point
of g o f is also a minimum point of f. |

Based on this, for the optimization problem
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arg min f(x)

it always has the same solution as argmin g o f(x), if g is a strictly increasing function. Or
argmax g o f(x), if g is a strictly decreasing function.

ExAMPLE 1
Consider an interesting matrix optimization problem that demonstrates the equivalence of

different objective functions under monotonic transformations.

Let X = (xi j) be a non-negative matrix with column sum constraints: 3L, x;; = ¢ for all
nxn

j (where c is a constant).

Define two objective functions:

noa
fl (X) — Li=1 i
Z#j Xij
(diagonal elements / oft-diagonal elements)
it1 Xii
f 2(X) = Z,:q 1
i,j=1 Xij

(diagonal elements / all elements)

Due to the column sum constraint, the total sum of all elements is: }';_; x;; = nc

Therefore: f,(X) = %
The sum of off-diagonal elements is: }';, ; x;; = nc — YL, x;;
So: fl(X) - nc;%:l?:ﬁxii
Key Observation: Let s = Y| x;;, then:
¢ f 2= %
* f 1= ﬁ
f2

These two functions have a monotonic relationship: f; = = i %
2

Since f is a strictly increasing function of f, (in the range f, < 1), we have:

The optimization problems max f,;(X) and max f,(X) are equivalent and have the same

optimal solution.

2 UNCONSTRAINED CASE

R" is the n-dimensional Euclidean space. x € R”, f : R" — Ris a differentiable function. Finding

the minimum point and minimum value of f is the optimization problem

min f(x)

xeR”

The iterative equation is

Xpr1 = X — oV f(x)
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where the step size « is a positive number that determines the update magnitude at each iteration.
V f(x;) is the gradient of function f at point x;. The algorithm’s goal is to make x;, — x* ask —
0o where x* € argmin f(x). that is to say, x* is a minimum. The pseudocode is as follows:

Input: initial point x,, step length & > 0, tolerance € > 0, max iterations N

Output: x*
1 k<0
2 whilek < N
31 gk = Vfxp)
4 Xy < X~ agy
5 if f(x,;) < ethen
6 return x;_;
7 k—k+1
8 return x;

Algorithm 1: Pseudocode of Gradient Descent

Let us look at an example

min X1, X
(xl,xz)elRZf( P 2)

where f(x;,x,) = x} + x,x, + x3. First, we know through analytical methods that for x;, x, € R

2 2 1 1/2) <x1 )
X7+ X%, +X =(x,x)( >0
1 142 2 1> 42 1/2 1 X,
Equality holds if and only if x; = 0,x, = 0. Therefore, the minimum value 0 is achieved at the
origin. Next, we use gradient descent to solve this.

x1\ _ [2x; +x,
Vf<x2> - (2x2 +x1>

X1 N ES 2x1 + X%,
<x2)k+1 - (xz >k - “(sz + X )k

We set the initial condition as x, = (1.0,2.0)T, step size & = 0.1, and stopping condition as f <
10720, After 212 iterations, the function value reaches 9.925765507684842e-21. The trajectory left
by each iteration in the feasible region is shown in the figure below. The black solid lines in the
figure are the contour lines of function f, and the arrows indicate the gradient field. The coloring
indicates the magnitude of the function value, with darker colors representing larger function
values. The red points represent the positions updated at each iteration, and the connecting lines
are the iteration trajectories. It can be seen that each iteration moves opposite to the gradient
direction with step size proportional to the gradient magnitude, and the iteration points gradually
approach the origin—the theoretical minimum point.

When we increase the step size to 0.4, after 44 iterations, the function value reaches
7.503260807194337e-21.

When we increase the step size to 0.5, after 35 iterations, the function value reaches
5.929230630780102e-21.
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If the step size is increased to 0.6, it leads to divergence. Therefore

Function f(x1,x2) = x1? + XXz + X2 with Gradient Field

-@- o =0.1 path
e Starting point

Xz

-1 | 2

T
-1 0 1 2 3

X1

Figure 1: Gradient Descent Visualization

It is not difficult to see that the iteration speed is related to the step size, which can lead to
divergence. Therefore, we need to choose an appropriate step size to ensure convergence.

3 CONSTRAINED CASE

When dealing with constrained optimization problems, we need to find the minimum of a function
f(x) subject to constraints. The general form is:

min - f(x)
subjectto g;(x) <0,i=1,2,....,m
hi(x) =0, j=1,2,...,1
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For constrained problems, we cannot simply move in the negative gradient direction as this may
violate the constraints. Instead, we need to project the gradient onto the feasible region or use
penalty methods.

3.1 PROJECTED GRADIENT METHOD

The projected gradient method modifies the standard gradient descent by projecting each iteration
onto the feasible set C:

X1 = He (g — oV f ()
where I1, denotes the projection operator onto the constraint set C.

The pseudocode for the projected gradient method is:

Algorithm Projected Gradient Method for minimize f subjectto x € C

Input: initial point x,, € C, step length « > 0, tolerance € > 0, max iterations N

Output: x*
1 ko0
2 while k < N
3 gr — Vf(xp)
4 Vie1 < X~ QG
5 Xiv1 < He()’k+1)
6 if f(x;,,) < e then
7 return x;
8 end
9 k—k+1
10 end
11 return x;

3.2 EXAMPLE: LINEAR CONSTRAINT

Consider the optimization problem:

min X1, X
(x1,%,)€R? f( P 2)

subjectto  x, =1
where f(x,x,) = x? + x;x, + x3 (same as the unconstrained case).

The feasible set is the line C = {(x;,x,) : x, = 1}. The unconstrained minimum (0,0) is not
feasible, so we expect the constrained optimum to lie on the constraint.

The gradient is the same as in the unconstrained case.

For the linear constraint x, = 1, the projection operation onto the line is:
He(y) = ()11)

Algorithm implementation:
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X X 2x, + X
(xl) :He(<x1) _“(2x1+x2) >
2/ k1 2/k 27T Mg

We demonstrate the algorithm starting from the same initial point as the unconstrained case:

We set the initial point as x, = (1.0, 2.0)T, which lies off the constraint. The algorithm first projects
this point onto the constraint x, = 1, resulting in (1.0, 1.0). After 1000 iterations, it converges to
the constrained optimal point with function value 0.75.

The visualization below shows the optimization trajectory and the projection process. The black
line represents the constraint x, = 1.

For all iterations, the visualization shows (with later iterations becoming more transparent):
« Red arrows: gradient steps —aV f(x;) from current point to unconstrained update
« Orange dotted lines: projection steps from the unconstrained update back to the constraint

This clearly demonstrates how the projected gradient method alternates between taking gradient
steps and projecting back to the feasible set. The gradient arrows show both the direction and
magnitude of the descent step, while the projection steps ensure feasibility. The path successfully
reaches the constrained optimal point (-0.5, 1.0).
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Constrained Optimization: f(x1,x2) = Xa2 + X1X2 + X2* subjecttox2 =1

— Constraint: x2 = 1
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Figure 2: Constrained Gradient Descent Visualization

3.3 PENALTY METHOD

Another approach for handling constraints is the penalty method, where we convert the
constrained problem into an unconstrained one by adding penalty terms:

m )
. 2
min L(x,p) = f(x) + p ) max(0, gi))” +p Y iy
i=1 =1
where p > 0is the penalty parameter. As p — 00, the solution of the penalized problem approaches

the solution of the original constrained problem.

4 CONVERGENCE

Next, we rigorously analyze the convergence of gradient descent.
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5 CONVEX OPTIMIZATION

If the optimization problem is convex, then gradient descent can guarantee finding the global
minimum. The definition of a convex function is: for any x, y € R" and A € [0, 1], we have

fAx+(1=-1)y) <Af(x) + 1=V f(y)
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