

論集合

閱讀本文需備初等數學基礎、並略知邏輯與集合論.

1 ZFC 公理

若夫集合者、聚同屬之物也.

命題 1 (内涵公理) 設 φ 為一元謂辭

$$\exists A \forall x (x \in A \leftrightarrow \varphi(x))$$

然則、適 φ 者皆見於A、A之所有悉適 φ 也. 記

$$A = \{x \mid \varphi(x)\}\$$

查察下例

例1(Russell's 悖論)

設

 $X = \{$ 集合未嘗言及於本文者 $\}$

則 X ∉ X、無己之集也. 聚此屬以為一集

 $A = \{x \mid x \notin x\}$

則此集有己乎? $A \in A \leftrightarrow A \notin A$ 故悖論也.

是以宜畧為限.

命題 2 (分離公理模式) 設 φ 為一元謂辭

$$\forall A \exists B \forall u \big(u \in B \leftrightarrow u \in A \land \varphi(u) \big)$$

內涵公理許擬集以任意謂詞、致生悖論. 而依分離公理則止得分自旣有之母集 B 也. 依然設 $\varphi(u) = u \notin u$ 、凡集合 A、子集 $R_A = \{x \in A \mid x \notin x\}$ 集也. 以排中律或 $R_A \in R_A$ 或 $R_A \notin R_A$. 代入分離公理得: $R_A \in R_A \leftrightarrow (R_A \in A \land R_A \notin R_A)$ 、若 $R_A \in R_A$ 則 $R_A \notin R_A$ 、此似反也、非反也; $R_A \notin A$ 故也. 如是、凡集合常有子集之外乎己者、所謂莫有万全之集合也. (Zermelo 1908)

命題3(外延公理)

$$\forall A \forall B (A = B \leftrightarrow (\forall x, x \in A \leftrightarrow x \in B))$$

外延公理謂集之相等以其元之相等爲準也.

1.1 集合代數

設 A、B 皆集也. 納 A 及 B 之所有為一集、曰 A 與 B 之**并集**、記 $A \cup B$.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

擇 A 及 B 之共有為一集、日 A 與 B 之交集、記 $A \cap B$.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

A之所有之不見於 B者、日 A 與 B之**差集**、記 $A \setminus B$.

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

1.2 子集與空集

設 A 集也. 若分 A 為一新集 B、日 A 之**子集**、記 B ⊆ A. 然則凡 b ∈ B 者悉見於 A 也.

$$B \subseteq A := (\forall b \in B)b \in A$$

若 $B \subseteq A$ 且 B = A、則日 B 為 A 之真子集、記 $B \subset A$.

集合無所有者曰**空集**、記 Ø、又 {}. 凡集、Ø 皆其子集也.

證. 設 A 集也. 欲證 $\emptyset \subseteq A$ 、即證 $\forall x(x \in \emptyset \to x \in A)$. 蓋 \emptyset 無元也、故前項為假而命題 空真矣.

1.2.1 集族

集合之集曰**集族**. 凡集合 S 之子悉聚以為族、謂之**冪集**、記 $\mathcal{P}(S) \coloneqq \{x \mid x \subseteq S\}$. 譬若 $\mathcal{P}\{1,2\} = \{\{\},\{1\},\{2\},\{1,2\}\}\}$. S 子集之族曰**子集族**. $\mathcal{P}(S)$ 之子集也. \mathcal{F} 集族也.

$$\bigcup \mathcal{F}\coloneqq \bigcup_{F\in\mathcal{F}} F\coloneqq \{x\mid (\exists F\in\mathcal{F})x\in F\}$$

名曰 \mathcal{F} 之一般並也。 \mathcal{F} 非空 1 則謂

$$\bigcap \mathcal{F} \coloneqq \bigcap_{F \in \mathcal{F}} F \coloneqq \{x \mid (\forall F \in \mathcal{F}) x \in F\}$$

曰 \mathcal{F} 之一般交也. 且較然易見

$$\bigcup \{A, B\} = A \cup B$$
$$\bigcap \{A, B\} = A \cap B$$

若 $\forall A, B \in \mathcal{F}, A \neq B \rightarrow A \cap B = \emptyset$ 則記 $\bigcup \mathcal{F}$ 為 $\bigcup \mathcal{F}$. 曰**不交並**.

設 \mathcal{F} ⊆ $\mathcal{P}(X)$ 、Ø $\notin \mathcal{F}$ 、X 之非空子集族也.

$$\bigcup \mathcal{F} = X$$

則日 \mathcal{F} 為X之劃分.

¹⁾ 莫有万全之集合故也

1.3 元組與直積

夫**有序對**者、亦曰二**元組**、記 (a,b). 所謂 (Kuratowski 1921) 如下

$$(a,b) := \{\{a\}, \{a,b\}\}$$

爹

- $(b,a) = \{\{b\}, \{b,a\}\} \neq (a,b)$
- $(a, a) = \{\{a\}, \{a, a\}\} = \{\{a\}, \{a\}\} = \{\{a\}\} \neq \{a\} = (a)$

命題 4
$$(a_1,b_1)=(a_2,b_2)\leftrightarrow a_1=a_2\wedge b_1=b_2$$

證.

- (←) 較然可見.
- $(\rightarrow) a_1 = b_1$ 則

$$\{\{a_2\}, \{a_2, b_2\}\} = (a_2, b_2) = (a_1, b_1) = \{\{a_1\}\}\$$

遂可見 $\{a_2\} = \{a_2, b_2\} = \{a_1\} \rightarrow a_2 = b_2 = a_1 = b_1$.

不然、 $a_1 \neq b_1$ 則

$$\{\{a_2\},\{a_2,b_2\}\}=(a_2,b_2)=(a_1,b_1)=\{\{a_1\},\{a_1,b_1\}\}$$

等式右側集合有二元、左側亦宜然. 遂 $a_2 \neq b_2$. 而 $\{a_2\} = \{a_1\}, \{a_2, b_2\} = \{a_1, b_1\}$ 可知矣. 於 是 $a_2 = a_1$ 且 $b_2 = b_1$ 也.

若夫a所有于A、b所有于B者、遍聚二元組之集合謂之A與B之**直積**、記 $A \times B$. 所謂如下

$$A \times B := \{(a,b) \mid a \in A \land b \in B\}$$

且可施及 n 集.

$$A_1 \times \dots \times A_n \coloneqq \begin{cases} A_1 & \text{ if } n = 1 \\ (A_1 \times \dots \times A_{n-1}) \times A_n & \text{ if } n > 1 \end{cases}$$

亦可記作 $\prod_{i=1}^{n} A_i$ 、n 維直積之元素稱為 n 元組. 內層括弧可省、若

$$(a_1, a_2, a_3, ..., a_n) := (\cdots ((a_1, a_2), a_3), ..., a_n)$$

1.4 關係

集合 $R \subseteq A \times B$ 者、謂之 A 與 B 上之二元關係、畧以關係.若 A = B 即 $R \subseteq A^2$ 則曰 A 上之關係. $(a,b) \in R$ 則曰 (a,b) 適 R.以中綴表達式記曰 aRb、亦可記以前綴式並輔以括弧讀號、曰 R(a,b).

夫 R 之定義域者、

$$\operatorname{dom} R := \{a \in A \mid (\exists b \in B) aRb\}$$

夫像域者、

$$\operatorname{im} R \coloneqq \{b \in B \mid (\exists a \in A)aRb\}$$

逆關係

$$R^{-1} := \{(b, a) \mid (a, b) \in R\}$$

也. 則 $\operatorname{dom} R^{-1} = \operatorname{im} R$ 且 $\operatorname{im} R^{-1} = \operatorname{dom} R$. 二元關係 S
multiple R 之**複合**謂以 $S \circ R \coloneqq \{(a,c) \mid \exists b \in B, (a,b) \in S \land (b,c) \in R\}$

例 2

大學校園中、設A為生集、B為課程、C為師集. 則 $S \subseteq A \times B$ 為學生受業關係、 $R \subseteq B \times C$ 為教師受業關係. 然則 $S \circ R$ 為師生關係也. 某生與某師有師生關係、則有某課師授而生受也.

1.5 等價關係

設~爲集S上之二元關係. 適三性如下列者謂S上之**等價關係**:

• 自反性: (∀s ∈ S)s ~ s

• 對稱性: $(\forall s, t \in S)s \sim t \rightarrow t \sim s$

• 傳遞性: $(\forall s, t, u \in S)s \sim t \wedge t \sim u \rightarrow s \sim u$

設~爲S上之等價關係、凡 $s \in S$ 、集合 $[s]_{\sim} := \{t \in S \mid s \sim t\}$ 名曰s之**等價類**. S之等價類族 曰**商集**、記 $S/\sim := \{[s]_{\sim} \mid s \in S\}$.

命題5 S之等價關係與其劃分一一對應也

證. 設~為等價關係之於S. 商集S/~為S之劃分也. 證之如下

1.6 恆等關係

記 S 上之恆等關係曰 ids

$$id_S := \{(s, s) \mid s \in S\}$$

若 $S = \{\diamondsuit, \diamondsuit, \heartsuit\}$ 、 $\mathrm{id}_S = \{(\diamondsuit, \diamondsuit), (\diamondsuit, \diamondsuit), (\heartsuit, \heartsuit)\}$

恆等關係者、等價關係也.

1.7 偏序關係

(S, ≤) 設以為結構之並以關係者、並有

自反性: (∀s ∈ S)s ≤ s

• 反對稱性: $(\forall s, t \in S)s \leq t \land t \leq s \rightarrow s = t$

• 傳遞性: $(\forall s, t, u \in S)s \leq t \land t \leq u \rightarrow s \leq u$

則 ≼ 名曰偏序關係. 偏序關係之最小者、唯恆等關係也. 不難證明之.

(1) id 適自反性、反對稱性、傳遞性、故爲偏序關係也.

- (2) 凡 $(\forall s \in S)$ id $\setminus \{(s,s)\}$ 之關係皆以有違自反性而非偏序關係也. 故最小也
- (3) 凡偏序關係必含 id 也. 可以歸謬法示其唯一也.

若夫偏序之匪等也、謂之**嚴格偏序**. 記 <. $a < b := a \le b \land a \ne b$

1.8 最大與最小

(T, ≤)偏序之構也. s ∈ T、若夫

- $\forall t \in T, s \nmid t$ 、莫大於 s. s 謂之極大.
- $\forall t \in T, t \nmid s$ 、莫小於 s. s 謂之極小.
- $\forall t \in T, t \leq s$ 、皆小於 s. s 謂之最大、記 $\max T = s$.
- $\forall t \in T, s \leq t$ 、皆大於 s. s 謂之**最小**、記 min T = s.

最大(小)者極大(小)也.

非空有窮偏序集者、偏序集之非空且有窮也.

- 極大(小)元常有.
- ・最大(小)元不常有.若 $T = \{ a, \diamond, \vee \}$ 、偏序關係 $\preceq = id$. a 孰與 \diamondsuit ? 所以無最大(小)元者、不可比而已.

非空有窮全序集常有最大(小)元. 請擬以歸納證明之

- 證.(非空有窮全序集 S 有最大元)
- (1) |S| = 1、S 之元唯一、即最大最小元也.
- (2) |S| = 2、設 $S = \{t_1, t_2\}$ 、其最元得計算如下

$$\max S = \begin{cases} t_1 & \text{if } t_2 \leq t_1 \\ t_2 & \text{if } t_1 \leq t_2 \end{cases}$$

(3) 設 |S| = N、S 有最大元. 察 |S| = N + 1、令 $S' = S \setminus \{s\}$. 由前款知 S' 有最大元 M'. 然 則 $\max S = \max\{M', s\}$ 、S 之最大元也.

集之界、不逾之境也. 凡集 $S \subseteq T$ 之元s、其或 $s \le M$ 者、則謂 $M \not S = L$ 界. 反之、若 $M \le s$ 則曰下界. 上下界並存、則謂之有界. 界不必含於集也. 上界之最小者、曰上確界、或曰最小上界、記 sup S. 下界之最大者、曰下確界、或曰最大下界、記 inf S.

$$\sup S = \min\{t \in T \mid s \in S, s \le t\}$$

$$\inf S = \max\{t \in T \mid s \in S, t \le s\}$$

若夫上界與上確界、察其性質、凡有二項、一曰 $\sup S$ 乃 S 之上界也、二曰凡其上界莫小於 $\sup S$ 、最小之上界也. 請問偏序集恆有上界乎? 1. 有窮集顯然恆有界、且 $\sup S = \max S$ 而 $\inf S = \min S$ 也. 依序可列 S 之元,

1.9 全序關係

若改≤之自反性爲完全性、即悉適

• 完全性: $(\forall s, t \in S)s \leq t \vee t \leq s$

• 反對稱性: $(\forall s, t \in S)s \leq t \land t \leq s \rightarrow s = t$

• 傳遞性: $(\forall s, t, u \in S)s \leq t \land t \leq u \rightarrow s \leq u$

者、謂曰**全序關係**、或曰**鏈**. 凡全序之關係、恆偏序也. 請備述之. 全序關係適反對稱性 與傳遞性、並以完全性蘊含自反性即知其亦偏序也.

命題 6 設 (X, ≤) 為全序集. 下列三命題等價也.

- (1) 凡 X 之非空子集有上界者有上確界
- (2) 凡 X 之非空子集有下界者有下確界
- **證**. (1) ⇒ (2): 使 A為 X 之非空子集也、且有下界. 集 A之下界以為 $B := \{b \in X \mid b \leq a, \forall a \in A\}$ 以 A 有下界知 B之不空也. 凡 $a \in A$ 皆為 B 上界也. 故 B 有上確界也. 假 $m := \sup B$,而 $m \leq a$ 也(以上確界乃最小上界故耳). 故知、 $m \in B$ 而 $m = \max B$. A 下界之最大者也. $m = \inf A$.
- $(2) \Rightarrow (3)$: 設 A,B 皆 X 之非空子集也. $\forall a \in A, \forall b \in B, a \leq b$ 也. 故知 A 之元俱為 B 之下界也. 由 (2) 知 B 有下確界、設以為 $c \coloneqq \inf B$ 、則 $a \leq c \leq b$ 、即所求也.

$$(3) \Rightarrow (1)$$
:

2 映射

X,Y 皆設以為集也. 夫**偏映射**者、 $X \times Y$ 上之二元關係 f 之

$$(x, y) \in f \land (x, y') \in f \rightarrow y = y'$$

者也. 若夫定義域、像域、逆、複合之所謂、悉承自二元關係也. 若定義域 $\operatorname{dom} f = X^2$ 、則曰**全映射**、簡稱**映射**. 記 $f: X \to Y$ 、 $Y \to \mathbf{8}$ **以**. 若 $(x,y) \in f$ 、記曰 f(x) = y 或 $f: x \to y$. 若 Y 為一數集、則 f 謂之**函數**.

2.1 限制與擴展

 $f: X \to Y$ 為映射也、 $S \subseteq X$ 、集合

$$f[S] \coloneqq \{f(s) \mid s \in S\}$$

名曰 f 於 S 之**像集**.

命題7 $f[S] \subseteq f[X] = \text{im } f$

證. 一者較然可見. 二者、即證 $f[X] \subseteq \text{im } f$ 及 $f[X] \supseteq \text{im } f$. 其中 $\text{im } f = \{y \in Y | (\exists x \in X) f(x) = y\}$ 承義自二元關係.

 $(\subseteq) \forall y \in f[X] = \{f(x) \mid x \in X\}$ 有 $x \in X$ 遂使 $y = f(x) \in Y$. 故 $y \in \text{im } f$.

(2)∀ $y \in \text{im } f \text{ f } x \in X$ 遂使 y = f(x). 是以 $y \in f[X]$.

定義函數 f 於 S 之**限制** $f|_S: S \to Y$ 、 $f|_S(s) \coloneqq f(s)$. 於是 im $f|_S = f[S]$.

2.2 單滿性

 $f: X \to Y$ 映射也. 夫**單射**者、

$$f(x) = f(x') \to x = x'.$$

為 f 之不同元有不同像也. 夫滿射者、

$$\forall y \in Y, \exists x \in X, f(x) = y.$$

夫對射者、單射且滿射.

命題 8 $f: X \to Y$ 滿射 \leftrightarrow im f = Y

證. (\rightarrow) 設 f 滿射也. 欲證 $\operatorname{im} f = Y$ 、即證 $\operatorname{im} f \subseteq Y \perp Y \subseteq \operatorname{im} f$. 前者較然. 及後者、蓋 f 滿射、故 $\forall y \in Y, \exists x \in X, f(x) = b$. 是以 $y \in \operatorname{im} f = \{f(x) | x \in X\}$.

 (\leftarrow) 設 im f = Y. 欲證 f 滿射也、即證 $\forall y \in Y, \exists x \in X, f(x) = b$. 蓋 im f = Y、則 $\forall y \in Y, y \in I$ im f. 是以 $\forall y \in Y, \exists x \in X, f(x) = b$.

是故、函數之單射否、滿射否、對射否、需論以定義域與終域. 如函數 $f: x \mapsto x^2$ 之於下列集合中.

$x \mapsto x^2$	單	滿
$\mathbb{R} o \mathbb{R}$	Τ	T
$\mathbb{R} \to \mathbb{R}_{\geq 0}$	Т	Т
$\mathbb{R}_{\geq 0} \to \mathbb{R}$	Т	Т
$\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$	Т	Т

單射乎、滿射乎、各不同也.

2.3 逆映射

 $f: X \to Y$ 對射也. 設 y = f(x) = f(x') 即有 $(x, y) \in f \land (x', y) \in f$. 單射故 x = x'. 考慮 其逆關係 $f^{-1} \subseteq Y \times X$:

$$(y,x) \in f^{-1} \wedge (y,x') \in f^{-1} \rightarrow x = x'$$

滿射故

$$\forall y \in Y, \exists x \in X, (y, x) \in f^{-1}$$

即 $Y = \text{dom } f^{-1}$. 是故 f^{-1} 映射也. 即對射之逆關係必爲映射. 曰 f 之**逆映射**.

命題9 逆映射者對射也.

- 映射 $g: Y \to X$ 使 $g \circ f = id_X$ 者、日 f 之**左逆映射**.
- 映射 $g: Y \to X$ 使 $f \circ g = id_Y$ 者、曰 f 之**右逆映射**.

命題 10 f^{-1} 左逆且右逆也.

證. 設 y = f(x) 即 $(x, y) \in f$ 、有 $(y, x) \in f^{-1}$ 、即 $x = f^{-1}(y)$.

- 先證 f^{-1} 左逆. 即 $x = f^{-1}(y) = f^{-1}(f(x))$.
- 次證 f^{-1} 右逆. 即 $y = f(x) = f(f^{-1}(y))$

命題 11 f 有左逆映射則 f 單射也.

證. 設 $g: Y \to X$ 為 f 之左逆映射也. 欲證 f 單射、即證 $f(x) = f(x') \to x = x'$. f(x) = f(x') 然則 g(f(x)) = g(f(x')). 以 g 為 f 之左逆映射知 x = x'.

2.4 勢

孟子曰「權、然後知輕重;度、然後知長短. 物皆然. 」計集 S 其元众寡曰**勢**、記以 |S|. S,T 集合也、若有對射 $f:S \to T$ 、則曰二集**等勢**、記曰 $S \cong T$. 蓋以 S 度 T 而無虛盈、則勢相若也.

多使自然数為籌、比之多少, ∃ $n \in \mathbb{N}$ 可使 S 與 $\mathbb{N}_{< n} := \{0, 1, 2, ..., n-1\}$ 對射、然則謂 S **有窮 集**、勢 n、記 |S| = n. 若有集 $S = \{\diamondsuit, \diamondsuit, \heartsuit, \diamondsuit\}$ 、計以一、二、三、四乃知其勢 4. 有對射

$$f:S\to\mathbb{N}_{<4}$$
 $\Leftrightarrow\mapsto0, \diamondsuit\mapsto1, \heartsuit\mapsto2, \diamondsuit\mapsto3$

故也.

若夫莫能以自然数數者、謂之**無窮集**. 如分數集、實數集等. |N| 定為 \aleph_0 . 集合與自然數集勢等者、謂曰**可數集**、否則曰**不可數集**. 如分數集爲可數集、實數集爲不可數集. 有窮集之勢自然數、且 $|\emptyset| = 0$. 無窮集者、雖不可勝數、猶可較也. 集可使其元對射於自然數者、若盡數自然數之勢然.

例3(自然數之等勢)

以下集合可數無窮:

·【N_{*} —— 正自然數】

易可驗證 $f: \mathbb{N} \to \mathbb{N}_*, n \mapsto n+1$ 對射、故 $|\mathbb{N}_*| = \aleph_0$.

•【№" —— 自然數組】

Cantor 折線法. 列 \mathbb{N}^2 所有為無窮矩陣、後沿折線以自然數編號、得對射 $\mathbb{N} \to \mathbb{N}^2$ 也.

$$(0,0) \rightarrow (1,0)$$
 $(2,0) \rightarrow (3,0)$...
 $(0,1)$ $(1,1)$ $(2,1)$ $(3,1)$...
 $(0,2)$ $(1,2)$ $(2,2)$ $(3,2)$...
 $(0,3)$ $(1,3)$ $(2,3)$ $(3,3)$...
 \vdots \vdots \vdots \vdots \vdots \vdots

于是凡自然數 n、 \mathbb{N}^n 皆可數也. 若 $(a,b,c) \in \mathbb{N}^3$ 、對應 $(a,(b,c)) \in \mathbb{N} \times \mathbb{N}^2$ 也. 以此類推.

·【2N — 偶數】

f(n) = 2n 者 $\mathbb{N} \to 2\mathbb{N}$ 之對射也. 奇數亦然. 進一步 $\mathbb{N}/n\mathbb{N}$ 之任意非空子集可數無窮也.

·【Z — 整數】

整數集也. 設 $f: \mathbb{Z} \to \mathbb{N}$

$$f(n) = \begin{cases} -2n - 1 & \text{if } n < 0 \\ 2n & \text{if } n \ge 0 \end{cases}$$

是映正數悉於偶數而負數悉映於奇數也.

•【Q — 分數】

分數集也. 依其所謂、 $\mathbb{Q} = \{p/q \mid p, q \in \mathbb{Z}, q \neq 0\}$ 故而可列下表.

依上圖折線、可編號所有真分數.

命題 12 (Schroder-Bernstein 定理) S,T 皆集也.

$$|S| \leq |T| \wedge |T| \leq |S| \to |S| = |T|$$

證. 設 $f:S \to T$ 與 $g:T \to S$ 皆單射也. 欲證 |S| = |T|、即證有對射 $h:S \to T$ 也. 設

$$S_n \coloneqq \begin{cases} S \smallsetminus g[T] & \text{ if } n = 0 \\ g \circ f[S_{n-1}] & \text{ if } n > 0 \end{cases}$$

 S_0 之元莫有 g 之像也. 而 S_1,S_2 ··· 之屬、俱可緣溯至 S_0 . 故集 S 之元之源自 S 者設以為 $S_S = \bigcup_{n \in \mathbb{N}} S_n$. 設 $\mathcal{T}_S = f[S_S]$ 、T 之元之源自 S 者也. S_S,S_T 不相交. 蓋 $S \in S_S$ 源自 S 而非 T 故也. 設

$$h: S \to T = \begin{cases} f & \text{ if } s \in S_S \\ g^{-1} & \text{ if } s \in S \setminus S_S \end{cases}$$

則 h 對射也. 何故?

- (1) f 單射而 $f|_{\mathcal{S}_S}$ 自然也. 反之、 $f|_{\mathcal{S}_S}:\mathcal{S}_S\to\mathcal{T}_S$ 滿射也. 以 $\mathcal{T}_S=f[\mathcal{S}_S]=\operatorname{im} f|_{\mathcal{S}_S}$ 較然可知. 於是 $f|_{\mathcal{S}_S}$ 對射也.
- (2) 同理以知 $g|_{T \setminus \mathcal{T}_T}$ 單射. 而

$$g[T \setminus \mathcal{T}_S] = S \setminus \mathcal{S}_S$$

然則可以命題 8 知 $g|_{T \smallsetminus \mathcal{T}_T}: T \smallsetminus \mathcal{T}_T \to S \smallsetminus \mathcal{S}_S$ 滿射也. 所以然者、蓋

- 凡 $s \in S \setminus S_S$ 者、 $s \notin S_0$. 是以 $s \in g[T] \to (\exists t \in T)g(t) = s$. 是唯需證 $t \notin \mathcal{T}_S$. 若 $t \in \mathcal{T}_S$ 、則 $(\exists s' \in S_S)f(s') = t$. 則s = g(t) = g(f(s'))即 $(\exists n \in \mathbb{N}_+)s \in S_n \subseteq S_S$. 謬也. 故 $t \notin \mathcal{T}_S \to t \in T \setminus \mathcal{T}_S \to s = g(t) \in g[T \setminus \mathcal{T}_S]$.
- 反之、凡 $s \in g[T \setminus \mathcal{T}_S]$ 、則 $\exists t \in T \setminus \mathcal{T}_S, g(t) = s$. 是唯需證 $s \notin \mathcal{S}_S$. 若 $s \in \mathcal{S}_S$ 、則 $(\exists n \in \mathbb{N}_+)s \in \mathcal{S}_n$. 繼而 $(\exists s' \in \mathcal{S}_S)g(f(s')) = s$ 、因 g 單射、 $t = f(s') \in \mathcal{T}_S$. 謬也. 故 $s \in S \setminus \mathcal{S}_S$.

是以 h 對射也. 所證如是.

命題 13 (Cantor's 定理) S 集也.

$$|S| < |\mathcal{P}(S)|$$

證. $f: S \to \mathcal{P}(S)$ 以為映射. 欲證 f 非對射也、蓋則 $|S| \leq |\mathcal{P}(S)|$. 設

$$T := \{ s \in S \mid s \notin f(s) \}$$

則 $T \subseteq S$ 故 $T \in \mathcal{P}(S)$. 欲證 T 非 f 之像也、蓋則 f 非對射也. 假 $\exists t \in S, f(t) = T$. 則

- (1) 若 $t \in T$ 、則 $t \notin f(t) = T$. 謬也.
- (2) 若 $t \notin T$ 、則 $t \in f(t) = T$. 謬也.

所證如是. ■

可數集 S 之冪集 $\mathcal{P}(S)$ 尤勢 $2^{|S|}$ 也、請以歸納法證明之: $|\mathcal{P}(\varnothing)| = |\{\varnothing\}| = 1$,若設以 $|\mathcal{P}(S)| = 2^{|S|}$,既添新元 x 於 S、其冪集必含原 $\mathcal{P}(S)$ 所有. $\mathcal{P}(S \cup \{x\})$ 之所添乃 x 與原 $\mathcal{P}(S)$ 所有之併也.

$$\mathcal{P}(S \cup \{x\}) = \mathcal{P}(S) \sqcup \{Y \cup \{x\} \mid Y \in \mathcal{P}(S)\}\$$

是以

$$2^{|S \cup \{x\}|} = |\mathcal{P}(S \cup \{x\})|$$

$$= |\mathcal{P}(S)| + |\{Y \cup \{x\} \mid Y \in \mathcal{P}(S)\}|$$

$$= 2^{|S|} + 2^{|S|} = 2^{|S|+1}$$

所證如是.

2.5 數列

命題 14 有序列 $\{a_n\}$ 單調遞減而 $\{b_n\}$ 單調遞增者、且 $a_n \ge b_n$. $\forall i, j \in \mathbb{N}$, $a_i \ge b_j$ 意即、 a_n 皆 b_n 之上界也、 b_n 皆 a_n 之下界也.

- **證**. 設 $i, j \in \mathbb{N}$ 、不失一般性、分三種情況討論:
- (1) i = j: 由題設知 $a_i \ge b_i$ 、故 $a_i \ge b_i$.
- (2) i < j: 因 $\{a_n\}$ 單調遞減、故 $a_i \ge a_j$. 因 $\{b_n\}$ 單調遞增、故 $b_j \ge b_i$. 由題設 $a_j \ge b_j$ 、結合上述不等式: $a_i \ge a_j \ge b_j$
- (3) i > j: 因 $\{a_n\}$ 單調遞減、故 $a_j \ge a_i$. 因 $\{b_n\}$ 單調遞增、故 $b_i \ge b_j$. 由題設 $a_i \ge b_i$ 、結合上述不等式: $a_i \ge b_i \ge b_j$

綜上所述、 $\forall i, j \in \mathbb{N}$ 、恆有 $a_i \geq b_j$.

因此、任意 a_i 皆為序列 $\{b_n\}$ 之上界、任意 b_i 皆為序列 $\{a_n\}$ 之下界.

2.5 引據

KURATOWSKI, Casimir, 1921. Sur la notion de l'ordre dans la théorie des ensembles. Fundamenta mathematicae. Online. 1921. Vol. 2, no. 1, p. 161−171. DOI ☑ 10.4064/fm-2-1-161-171.

ZERMELO, E., 1908. Untersuchungen über die Grundlagen der Mengenlehre. I. Mathematische Annalen. Online. 1 六月 1908. Vol. 65, no. 2, p. 261–281. DOI ☑ 10.1007/BF01449999.